39 resultados para bone marrow mesenchymal stem cell

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human β-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked β-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human β-globin and the green fluorescent protein in 20–95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of β-locus control region hypersensitive site 2 alone, human β-globin mRNA expression levels ranged from 0.15% to 20% with human β-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adhesive mechanisms allowing hematopoietic progenitor cells (HPC) homing to the bone marrow (BM) after BM transplantation are poorly understood. We investigated the role of endothelial selectins and vascular cell adhesion molecule-1 (VCAM-1) in this process. Lethally irradiated recipient mice deficient in both P-and E-selectins (P/E−/−), reconstituted with minimal numbers (≤5 × 104) of wild-type BM cells, poorly survived the procedure compared with wild-type recipients. Excess mortality in P/E−/− mice, after a lethal dose of irradiation, was likely caused by a defect of HPC homing. Indeed, we observed that the recruitment of HPC to the BM was reduced in P/E−/− animals, either splenectomized or spleen-intact. Homing into the BM of P/E−/− recipient mice was further compromised when a function-blocking VCAM-1 antibody was administered. Circulating HPC, 14 hr after transplantation, were greatly increased in P/E−/− mice treated with anti-VCAM-1 compared with P/E−/− mice treated with just IgG or wild-type mice treated with either anti-VCAM-1 or IgG. Our results indicate that endothelial selectins play an important role in HPC homing to the BM. Optimal recruitment of HPC after lethal doses of irradiation requires the combined action of both selectins and VCAM-1 expressed on endothelium of the BM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a rare (≈0.05–0.1%) population of cells (Thy-1hiCD16+CD44hiCD2−TCRαβ−B220−Mac-1−NK1.1−) in the adult mouse bone marrow that generates CD4+ and CD8+ TCRαβ+ T cells after tissue culture for 48 hr in the presence of Ly5 congenic marrow cells. The essential stages in the maturation of the progenitors were determined; the stages included an early transition from CD2−CD16+CD44hiTCRαβ− to CD2+CD16int/−CD44int/−TCRαβ− cells, and a later transition to CD4+CD8+TCRαβ+ double-positive T cells that rapidly generate the CD4+ and CD8+ single-positive T cells. The maturation of the progenitors is almost completely arrested at the CD2+TCRαβ− stage by the presence of mature T cells at the initiation of cultures. This alternate pathway is supported by the marrow microenvironment; it recapitulates critical intermediary steps in intrathymic T cell maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptides are implicated in many tumors, breast cancer (BC) included. Preprotachykinin-I (PPT-I) encodes multiple neuropeptides with pleiotropic functions such as neurotransmission, immune/hematopoietic modulation, angiogenesis, and mitogenesis. PPT-I is constitutively expressed in some tumors. In this study, we investigated a role for PPT-I and its receptors, neurokinin-1 (NK-1) and NK-2, in BC by using quantitative reverse transcription–PCR, ELISA, and in situ hybridization. Compared with normal mammary epithelial cells (n = 2) and benign breast biopsies (n = 21), BC cell lines (n = 7) and malignant breast biopsies (n = 25) showed increased expression of PPT-I and NK-1. NK-2 levels were high in normal and malignant cells. Specific NK-1 and NK-2 antagonists inhibited BC cell proliferation, suggesting autocrine and/or intercrine stimulation of BC cells by PPT-I peptides. NK-2 showed no effect on the proliferation of normal cells but mediated the proliferation of BC cells. Cytosolic extracts from malignant BC cells enhanced PPT-I translation whereas extracts from normal mammary epithelial cells caused no change. These enhancing effects may be protein-specific because a similar increase was observed for IL-6 translation and no effect was observed for IL-1α and stem cell factor. The data suggest that PPT-I peptides and their receptors may be important in BC development. Considering that PPT-I peptides are hematopoietic modulators, these results could be extended to understand early integration of BC cells in the bone marrow, a preferred site of metastasis. Molecular signaling transduced by PPT-I peptides and the mechanism that enhances translation of PPT-I mRNA could lead to innovative strategies for BC treatments and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical to homeostasis of blood cell production by hematopoietic stem/progenitor (HSC/P) cells is the regulation of HSC/P retention within the bone marrow microenvironment and migration between the bone marrow and the blood. Key extracellular regulatory elements for this process have been defined (cellcell adhesion, growth factors, chemokines), but the mechanism by which HSC/P cells reconcile multiple external signals has not been elucidated. Rac and related small GTPases are candidates for this role and were studied in HSC/P deficient in Rac2, a hematopoietic cell-specific family member. Rac2 appears to be critical for HSC/P adhesion both in vitro and in vivo, whereas a compensatory increase in Cdc42 activation regulates HSC/P migration. This genetic analysis provides physiological evidence of cross-talk between GTPase proteins and suggests that a balance of these two GTPases controls HSC/P adhesion and mobilization in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the CD34 antigen is widely used in the identification and purification of hemopoietic stem and progenitor cells, its function within hemopoiesis is unknown. We have investigated this issue by ectopically expressing human (hu) CD34 on the surface of murine hemopoietic cells. Forced expression of hu-CD34 in the thymocytes of transgenic mice did not appear to affect the development, maturation, or distribution of murine T cells but did significantly increase their ability to adhere to bone marrow stromal layers of human but not mouse origin. Ectopic expression of hu-CD34 on murine 416B cells, a multipotential progenitor that expresses murine CD34, yielded similar results. In both cases hu-CD34-dependent adhesion was enhanced by molecular engagement of the hu-CD34 protein using anti-CD34 antibodies. These results provide evidence that CD34 promotes the adhesive interactions of hemopoietic cells with the stromal microenvironment of the bone marrow thereby implicating CD34 in regulation and compartmentalization of stem cells. We propose that CD34 regulates these processes in part via an indirect mechanism, signaling changes in cellular adhesion in response to molecular recognition of an as yet unidentified stromal CD34 counterreceptor or ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemopoietic stem cells are a distinct population of cells that can differentiate into multilineages of hemopoietic cells and have long-term repopulation capability. A few membrane-bound molecules have been found to be preferentially, but not uniquely, present on the surface of these primitive cells. We report here the identification of a unique 105-kDa glycoprotein on the surface of hemopoietic stem cell line BL3. This molecule, recognized by the absorbed antiserum, is not present on the surface of myeloid progenitors 32D and FDC-P1 cells, EL4 T cells, and NIH 3T3 fibroblasts. This antiserum can also be used to block the proliferation of BL3 cells even in the presence of mitogen-stimulated spleen cell conditioned medium, which is known to have a stimulating activity on BL3 cells. It can also inhibit development of in vitro, fetal liver cell-derived multilineage colonies, but not other types of colonies, and of in vivo bone marrow cell-derived colony-forming unit spleen foci. These data suggest that gp105 plays an important role in hemopoietic stem cell differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical evidence of hematopoietic restoration with placental/umbilical cord blood (PCB) grafts indicates that PCB can be a useful source of hematopoietic stem cells for routine bone marrow reconstitution. In the unrelated setting, human leukocyte antigen (HLA)-matched donors must be obtained for candidate patients and, hence, large panels of frozen HLA-typed PCB units must be established. The large volume of unprocessed units, consisting mostly of red blood cells, plasma, and cryopreservation medium, poses a serious difficulty in this effort because storage space in liquid nitrogen is limited and costly. We report here that almost all the hematopoietic colony-forming cells present in PCB units can be recovered in a uniform volume of 20 ml by using rouleaux formation induced by hydroxyethyl starch and centrifugation to reduce the bulk of erythrocytes and plasma and, thus, concentrate leukocytes. This method multiples the number of units that can be stored in the same freezer space as much as 10-fold depending on the format of the storage system. We have also investigated the proportion of functional stem/progenitor cells initially present that are actually available to the recipient when thawed cryopreserved PCB units are infused. Progenitor cell viability is measurably decreased when thawed cells, still suspended in hypertonic cryopreservative solutions, are rapidly mixed with large volumes of isotonic solutions or plasma. The osmotic damage inflicted by the severe solute concentration gradient, however, can be averted by a simple 2-fold dilution after thawing, providing almost total recovery of viable hematopoietic progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective lodgement or homing of transplanted hemopoietic stem cells in the recipient's bone marrow (BM) is a critical step in the establishment of long-term hemopoiesis after BM transplantation. However, despite its biologic and clinical significance, little is understood about the process of homing. In the present study, we have concentrated on the initial stages of homing and explored the functional role in vivo of some of the adhesion pathways previously found to mediate in vitro adhesion of hemopoietic cells to cultured BM stroma. We have found that homing of murine hemopoietic progenitors of the BM of lethally irradiated recipients at 3 h after transplant was significantly reduced after pretreatment of the donor cells with an antibody to the integrin very late antigen 4 (VLA4). This inhibition of marrow homing was accompanied by an increase in hemopoietic progenitors circulating in the blood and an increased uptake of these progenitors by the spleen. Similar results were obtained by treatment of the recipients with an antibody to vascular cell adhesion molecule 1 (VCAM-1), a ligand for VLA4. Furthermore, we showed that administration of the same antibodies (anti-VLA4 or anti-VCAM-1) to normal animals causes mobilization of hemopoietic progenitors into blood. These data suggest that hemopoietic cell lodgement in the BM is a regulatable process and can be influenced by VLA4/VCAM-1 adhesion pathway. Although additional molecular pathways are not excluded and may be likely, our data establish VCAM-1 as a BM endothelial addressin, analogous to the role that mucosal addressin cell adhesion molecule (MAdCAM) plays in lymphocyte homing. Whether splenic uptake of hemopoietic progenitors is passive or controlled through different mechanisms remains to be clarified. In addition, we provide experimental evidence that homing and mobilization are related phenomena involving, at least partly, similar molecular pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantations of fully allogeneic, autoimmune-resistant T-cell-depleted marrow (TCDM) plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice were carried out to investigate the ability of the mixed bone marrow transplantation (BMT) to prevent development of autoimmune disease and, at the same time, to reconstitute fully the immunity functions of heavily irradiated BXSB recipients. Male BXSB mice were engrafted with mixed TCDM from both allogeneic, autoimmune-resistant BALB/c mice and syngeneic, autoimmune-prone BXSB mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) prolonged the median life span and inhibited development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also prevented the formation of anti-DNA antibodies that is typically observed in male mice of this strain. Moreover, mixed BMT reconstituted primary antibody production in BXSB recipients, so that no annoying immunodeficiencies that are regularly observed in fully allogeneic chimeras were present in the recipient of the mixed TCDM. These findings indicate that transplanting allogeneic, autoimmune-resistant TCDM plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice prevents development of autoimmune disease in this strain of mice. In addition, this dual BMT reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total-body irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem facing the effective treatment of patients with cancer is how to get the specific antitumor agent into every tumor cell. In this report we describe the use of a strategy that, by using retroviral vectors encoding a truncated human CD5 cDNA, allows the selection of only the infected cells, and we show the ability to obtain, before bone marrow transplantation, a population of 5-fluouraci-treated murine bone marrow cells that are 100% marked. This marked population of bone marrow cells is able to reconstitute the hematopoietic system in lethally irradiated mice, indicating that the surface marker lacks deleterious effects on the functionality of bone marrow cells. No gross abnormalities in hematopoiesis were detected in mice repopulated with CD5-expressing cells. Nevertheless, a significant proportion of the hematopoietic cells no longer expresses the surface marker CD5 in the 9-month-old recipient mice. This transcriptional inactivity of the proviral long terminal repeat (LTR) was accompanied by de novo methylation of the proviral sequences. Our results show that the use of the CD5 as a retrovirally encoded marker enables the rapid, efficient, and nontoxic selection in vitro of infected primary cells, which can entirely reconstitute the hematopoietic system in mice. These results should now greatly enhance the power of studies aimed at addressing questions such as generation of cancer-negative hematopoiesis.